Numerical simulation of mixed convection heat transfer of nanofluid in an inclined enclosure by applying LBM

author

Abstract:

Mixed convection of Cu-Water nanofluid is studied numerically in a shallow inclined enclosure by applying lattice Boltzmann method. The D2Q9 lattice and internal energy distribution function based on the BGK collision operator are used in order to develop the thermal flow field. The enclosure's hot lid has the constant velocity of U0 while its cold lower wall has no motion. Moreover, sidewalls are taken in to account as adiabatic ones. At 3 modes of convection heat transfer (free convection, force convection and mixed convection), the effects of volume fraction and inclination angle of enclosure are studied for different values of Reynolds number as equal to 10 and 100. Comparison of achieved results as like the streamlines, isotherms and profiles of velocity and temperature versus pervious available ones, implies the appropriate agreement. It is seen that more amount of volume fraction and enclosure inclination angle at the state of free convection would correspond to higher Nusselt number. The incomes of present work show the suitable performance of lattice Boltzmann method in order to simulate the nanofluid mixed convection in an inclined enclosure.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Mixed Convection Heat Transfer of Water-Alumina Nanofluid in an Inclined and Baffled C-Shaped Enclosure

In this article, mixed convection heat transfer of alumina-water nanofluid in an inclined and baffled C-shape enclosure is studied. It is assumed that the flow is laminar and steady. There is no energy production, energy storage and viscous heat dissipation. Furthermore, the nanofluid is considered as a continuous, Newtonian and incompressible fluid. Governing equations are discretized by finit...

full text

Single Walled Carbon Nanotube Effects on Mixed Convection heat Transfer in an Enclosure: a LBM Approach

The effects of Single Walled Carbon Nanotube (SWCNT) on mixed convection in a cavity are investigated numerically. The problem is studied for different Richardson numbers (0.1-10), volume fractions of nanotubes (0-1%), and aspect ratio of the cavity (0.5-2.5) when the Grashof number is equal to 103. The volume fraction of added nanotubes to Water as base fluid are lowers than 1% to make dilute ...

full text

Numerical simulation of Al2O3–water nanofluid mixed convection in an inclined annulus

Laminar mixed convection of Aluminium oxide (Al2O3)–water nanofluid flow in an inclined annulus using a single-phase approach was numerically studied. Constant heat flux boundary conditions were applied on the inner and outer walls. All the thermophysical properties of nanofluid, such as, viscosity, heat capacity, thermal conductivity, and thermal expansion coefficient, except density in the bo...

full text

Numerical simulation of Al2O3–water nanofluid mixed convection in an inclined annulus

Laminar mixed convection of Aluminium oxide (Al2O3)–water nanofluid flow in an inclined annulus using a single-phase approach was numerically studied. Constant heat flux boundary conditions were applied on the inner and outer walls. All the thermophysical properties of nanofluid, such as, viscosity, heat capacity, thermal conductivity, and thermal expansion coefficient...

full text

single walled carbon nanotube effects on mixed convection heat transfer in an enclosure: a lbm approach

the effects of single walled carbon nanotube (swcnt) on mixed convection in a cavity are investigated numerically. the problem is studied for different richardson numbers (0.1-10), volume fractions of nanotubes (0-1%), and aspect ratio of the cavity (0.5-2.5) when the grashof number is equal to 103. the volume fraction of added nanotubes to water as base fluid are lowers than 1% to make dilute ...

full text

Numerical Investigation of Nanofluid Mixed Convection and Entropy Generation in an Inclined Ventilating Cavity

This paper presents results of a numerical study of mixed convection and entropy generation of Cu–water nanofluid in a square ventilating cavity at different inclination angles. Except a piece of bottom wall with a uniform heat flux, all of the cavity walls are insulated. The inlet port is placed at the bottom of the left wall and the outlet port is positioned at the top of the right wall....

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 1

pages  135- 152

publication date 2016-04-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023